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Abstract
We study the force-induced unfolding of a homopolymer on the three-
dimensional Sierpinski gasket. The polymer is subject to a contact energy
between nearest-neighbour sites not consecutive along the chain and to a
stretching force. The hierarchical nature of the lattice we consider allows for an
exact treatment which yields the phase diagram and the critical behaviour. We
show that for this model mean-field predictions are not correct; in particular, in
the exact phase diagram there is no low-temperature re-entrance, and we find
that the force-induced unfolding transition below the theta temperature is of
second order.

PACS numbers: 64.60.Cn, 87.15.−v, 87.15.He, 05.10.Cc

The recent development of single-molecule techniques has given experimentalists the
opportunity to grab with suitable handles and mechanically manipulate, by means of optical
tweezers [1] or cantilevers such as atomic force microscopes [2], proteins, molecular motors
or DNA molecules. In this way it has become possible to measure or exert on these molecules
forces in the piconewton range. In particular the effect of a stress on the giant molecule titin has
been studied in [3–5], where it was found that a force-induced unfolding transition takes place
between a compact native-like state and an extended state. The presence of strong hysteresis
together with the rather abrupt jumps observed in the force versus elongation curves suggest
that the unfolding is a first-order phase transition. On the theoretical side, many simple models
have been proposed to make contact with these experiments (see e.g. [6–11] for the stretching
of proteins and homopolymers, [12–15] for DNA unzipping and [16–18] for RNA unzipping).
In particular, in [6, 7] the authors study the force-induced unfolding of a homopolymer and
a heteropolymer in the mean-field approximation and find that in both cases the critical line
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Figure 1. In this figure we show the 3DSG at the second stage of iteration construction. Four
tetrahedra (dashed lines) at the first order of iteration are put together in order to form the tetrahedron
which constitutes the 3DSG at the second iteration (bold lines). The stretching force �f acts along
one of the edges of the 3DSG and is also shown in the figure.

separating the globule from the coil is re-entrant at low temperatures. This is analogous to what
had been found for the phase boundary in the phase diagram valid for the DNA unzipping,
where it has been proved exactly that in the presence of a pulling force mean field is correct [14].

When self-avoidance is incorporated in the models, exact results are rare and mean-field
treatments become popular. In this work, we study exactly the force-induced unfolding of a self-
avoiding walk (SAW) on a fractal lattice, the three-dimensional Sierpinski gasket (SG) [19,20].
This gasket has a fractal dimension Df = 2, and this renders the system interesting from
the theoretical point of view because we are below the upper critical dimension for theta
collapse [21]. Mean-field theory would predict a re-entrance here because the Hamiltonian
compact walks in this lattice have nonzero entropy as compared with the zero entropy of the
completely stretched coil (the same argument as in [14]). However, the exact critical line that
we find in the SG shows no re-entrance. Similarly, by comparing the free energies of the
globule and that of the coil one would naively expect a first-order transition, whereas the exact
calculation yields a second-order transition. Though we cannot conclude from this calculation
that on Euclidean lattices the situation will also be analogous, we feel that this calculation
should give a warning that the mean-field prediction need not be correct. The presence or
absence of re-entrance on Euclidean lattices together with the nature of the transition is thus
an intriguing question which deserves further work.

We consider a SAW on the three-dimensional Sierpinski gasket (3DSG) [19, 20], a
hierarchical lattice with ramification number four and Df = 2 (figure 1). We study the
combined effect of a force �f which stretches the polymer along one edge of the SG (figure 1)
together with a compacting self-attractive term, obtained by assigning a weight exp(βε)(ε > 0)
every time two non-consecutive sites of the SAW are nearest neighbours in the 3DSG. We call
β ≡ T −1 the inverse temperature. To describe the effect of the stretching force, we give each
step of the walk an orientation and a weight exp(βf
a), where f ≡ | �f | is the modulus of �f
and 
a is the projection of the oriented step along �f .

The calculation of the partition function and other thermodynamic quantities involves the
evaluation of 25 generating functions (figure 2). 12 generating functions involve contributions
of a SAW which enters at the nth-order SG at one vertex and goes out at one other vertex.
12 other generating functions arise when an (oriented) SAW starts from a vertex, goes out
from another one and then re-enters the nth-order SG at a later stage. The last generating
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Figure 2. In this figure we show the generating functions at the first order together with their names
given in the text.

function is the void. The one-leg generating functions are labelled Ai , i = 1, . . . , 12, and the
two-leg contributions Bi , i = 1, . . . , 12. One can write recursion relations for the generating
functions by exactly enumerating all walks in the SG on the computer: one has to sum up the
contributions of SAWs at the nth-order SG in order to generate SAWs in the (n + 1)th-order
SG.

The initial conditions for the generating functions are

A1 = zy−1 A2,3,4,8 = zy−1/2

A5,9,10,11 = zy1/2 A6,7 = z A12 = zy

B1,2,3,6 = z2w4y−1 B4,5,8,9 = z2w4 B7,10,11,12 = z2w4y

(1)

where z is the SAW step fugacity, y ≡ exp(βf ) and w ≡ exp(βε) is the weight responsible
for the theta collapse in the absence of force.
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Note that, as is apparent from the above equations, we have adopted the convention that
interactions are restricted to sites within the first-order SG and moreover that after one SAW
has touched one vertex in the SG it is obliged to exit from the SG at that order [20, 22, 23].
It has been proved that this approach is equivalent to the more general approach as regards
universality of the phase transition [23].

When there is no pulling force the recursion relations simplify because

Ai ≡ A Bi ≡ B ∀i = 1, . . . , 12, (2)

so one obtains [20]

A′ = A2 + 2A3 + 2A4 + 4A3B + 6A2B2 B ′ = A4 + 4A3B + 22B4. (3)

At non-zero �f , the equations retain the same structure but every B and every A has
to be labelled by the appropriate number as found in the exact enumeration. To solve the
model, we proceed as follows. First, we must find the fixed points of the recursion relations:
in general, for every phase or critical point (line) there is a fixed point. Then, for every f
and T fixed, we have to find the critical step fugacity, zc(βε, βf ), such that the flux defined
by the 25 recursion relations and initial conditions will bring the system to the fixed point
corresponding to these values of f and T . This critical step fugacity zc(βε, βf ) allows us to
obtain a numerical expression for all the quantities we are interested in, namely, the free energy
F(βε, βf ) ≡ 1

β
log(zc(βε, βf )), the average elongation along the direction of the pulling

force 〈x〉(βε, βf ) and the average number of contacts 〈n〉(βε, βf ), found by calculating the
appropriate derivative of F(βε, βf ).

From the linearized recursion equations, it is possible to obtain the critical exponents of
the phase transition. Every eigenvalue λ (there are at most as many such eigenvalues as there
are recursion relations) of the linearized flux at given f and T defines two critical exponents,
Y and ν, through

λ ≡ 2Y ≡ 2
1
ν (4)

where ν ≡ 1
Y

is defined in terms of the average squared elongation 〈x2〉 as 〈x2〉 ∼ N2ν [21]
for large values of the number of steps in the SAW, N .

Performing this analysis for our model, we find six different fixed points. At zero force,
we re-obtain the fixed points given in [20]. In particular, for T < Tθ ≡ 2

log(3) , the theta collapse
temperature in the absence of force, there is a zero-force compact fixed point for the recursion
relations:

Ai = 0 Bi = 22−1/3 ≡ B∗ ∀i = 1, . . . , 12. (5)

For T > Tθ , i.e. in the swollen phase, the fixed point that is approached is

Ai � 0.4294 . . . Bi � 0.049 98 . . . ∀i = 1, . . . , 12. (6)

Just at criticality at the theta temperature, T = Tθ , the fixed point is

Ai = 1/3 Bi = 1/3 ∀i = 1, . . . , 12. (7)

The corresponding critical indices ν (corresponding to the largest eigenvalues, λ1, in every one
of the three regimes) are 1/2, 0.5294 . . . and 0.7294 . . . respectively in the collapsed phase, at
the theta point and in the swollen phase.

At T < Tθ , there exists a critical line f = fc(T ) separating a compact from an open
phase. When f < fc(T ) the recursion relations display another compact fixed point:

Ai = 0 ∀i = 1, . . . , 12
B4,5,8,9 = 22−1/3 B1,2,3,6 = 0 B7,10,11,12 = +∞.

(8)
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The divergence arises from the pulling force and one can be convinced that the two-leg
generating functions are diverging (vanishing) for L → ∞ (L is the system size, and one
has L = 2n−1 at the nth level of iteration in the construction of the 3DSG) as yL (y−L).
Consequently, we can eliminate the divergences if for example we multiply the diverging
functions for B1, and the vanishing ones for B7, and then take the square root of the result:
if we do this all the two-leg generating functions converge to the fixed point 22−1/3 as in the
zero-force compact phase. When the SAW is in the open phase (f > fc(T )), the fixed point
is

Ai = 0 ∀i = 1, . . . , 11

A12 = 1

Bi = 0 ∀i = 1, . . . , 12.

(9)

Finally, when the force is exactly tuned at the critical line, the fixed point which is approached
is

Ai = 0 ∀i = 1, . . . , 11

A12 = 1

1 + 6 ∗ 22−2/3
∼ 0.5668 ≡ A∗ . . .

B4,5,8,9 = 22−1/3 B1,2,3,6 = 0 B7,10,11,12 = +∞
(10)

again the square root of the products of one diverging two-leg function multiplied by a vanishing
two-leg function is 22−1/3. We shall see later that it is also possible to justify the value found
numerically for the nonzero-force system. The exponent ν is equal to one-half for f � fc(T )

and is unity in the open phase.
In practice, by taking advantage of the knowledge of the fixed points, one can devise a

convenient way to calculate numerically the critical force as a function of temperature. Once
the critical step fugacity, zc(βε, βf = 0), of the compact phase at a fixed temperature T is
known one can further fix z to this value, and then tune f in order to pass from the compact
fixed point to the critical line fixed point (within the precision allowed by the computer). In
order to have a sufficient accuracy in these calculations, it proved necessary to use a computer
with quadruple precision.

The phase diagram obtained numerically is shown in figure 3. Two remarks are in order.
First, we notice that there is no re-entrance in the critical line, the slope at T = 0 being
approximately −0.05. This is at variance with the prediction possible on the basis of mean-
field-like treatments (such as those done e.g. in [6, 7], see also below). Second, the behaviour
of the critical line near Tθ is

fc(T ) ∼ (Tθ − T )a=0.87±0.01, (11)

in agreement with the prediction a = νθ
φ

= 0.868, where νθ is the critical exponent of the end-
to-end distance at the theta temperature and φ is the theta transition crossover exponent [21]
(see below for an argument leading to the behaviour in equation (11)).

We report in figure 4 the plot of 〈x〉 versus f at T = 0.35. This figure supports the
hypothesis that the unfolding transition for the homopolymeric SAW on the 3DSG is of second
order. This is in agreement with the argument based on the recursion relations given below.
Our belief supported by the exact numerics is that the transition is of second order for any
nonzero T and is of first order only at T = 0.

We now present some arguments to interpret our results (based on the renormalization
group (RG) flux). Even though to write explicitly the equations and to cope numerically with
them it was necessary to put the force in step by step, this is equivalent to evolving the f = 0
generating functions (equation (3)) and then putting in the dependence on �f at every iteration by
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Figure 3. Plot of the phase diagram on the 3DSG found numerically. In this figure we have taken
ε = 1/2 to make the calculations.
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Figure 4. Plot of the average elongation scaled by N in the thermodynamic limit as a function of
f for T = 0.35. The critical force found numerically, by imposing that the fixed point reached
after iteration of the recursion is that of equation (10), is approximately 0.969 . . . . We have taken
ε = 1/2 in these calculations.

multiplying the generating functions by suitable powers of y. If we do this, we can exploit the
symmetries of the problem, which mean that, before multiplying the generating functions by
a y-dependent term, all one-leg and two-leg diagrams are separately equivalent. By noting the
structure of the nonzero-force fixed points, one can argue that the one-leg generating functions
must vanish in the compact phase asA ∼ Cy−L

c , where yc ≡ exp(βfc(T )) andC is a constant,
for now undetermined. By matching the exponentials in equation (3), we obtain that the two
equations, when T � Tθ (T → 0), can be approximated by

A′ = A2 + 6A2B2 B ′ = 22B4. (12)

The flux corresponding to these RG equations is shown in figure 5. The non-trivial fixed point,
(A∗, B∗) with both A∗ and B∗ non-zero, is obtained with B∗ = 22−1/3 and A∗ = 1

1+6(B∗)2 .

ThusA ∼ Cy−L
c as L → ∞, with C = A∗. When T → 0, the fixed points can be approached

very fast. This holds also in the full RG treatment (not simplified) since the terms that should
evolve to zero have small initial values at low temperature. As a consequence, as T → 0,
the phase boundary of figure 3 is found by matching the initial conditions with the fixed-point
values for A12 and any B. Thus the critical line is found by solving this system:

zc = exp (−2βε)(B∗)1/2 zc = exp (−βf )A∗ (13)
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Figure 5. Plot of the flux lines resulting from the simplified recursion relations corresponding to
equation (12).

where B∗ and A∗ are the nonzero fixed points of equation (12), corresponding to the critical
force (such that yLA ∼ 1 for large L, see equation (10)). The critical line for T → 0 is

fc(T ) ∼ 2ε + T log

(
A∗

(B∗)1/2

)
∼ 2ε − 0.0525 . . . T , (14)

so that fc(T ) starts with negative slope as found numerically. For f > fc(T ), the fixed point
to be reached in the (A,B) plane of figure 5 is (1, 0). We observe that for a small deviation
from A∗ the RG flux takes the SAW to the open fixed point by moving along the line B(A),
which we can find in the neighbourhood of (A∗, B∗) by requiring that it be a fixed line under
the flux defined by the recursion equations. We require that B(A) ∼ B∗ + c(δA)α in the
neighbourhood of A∗. We thus need to solve the system

A′ = [A∗ + (δA)]2[1 + 6[B∗ + c(δA)α]2] B(A′) = 22[B∗ + c(δA)α]4 (15)

in the unknown quantities c and α. We obtain c = −1/12A∗3B∗ ∼ −1.2826 . . . and α = 2,
so the fixed line B(A) smoothly approaches the fixed point at critical force. By inserting these
values in the expression B(A) ∼ B∗ + c(δA)α together with the ansatz

zc(βfc, βε)− zc(βf, βε) ∼ (f − fc)
γ , (16)

one obtains γ = 2, which implies 〈x〉 ∼ (f − fc) for f � fc and the transition is of second
order. This argument is strictly valid for low T . However it is unlikely that the order of the
transition could change along the phase boundary and this is also confirmed by our numerics.
The situation at the point T = 0 is somewhat special: the entropy vanishes and balancing the
energetic terms gives a first-order transition.

One should notice the importance of the term 6A2B2. Let us consider a mathematical
simplified model in which the relevant equations are

A′ = A2 B ′ = 22B4 (17)

in which the mixed term (physically due to stretched walks that still make an extensive number
of contacts) is suppressed. This corresponds to balancing the free energy of a stretched coil
with that of a compact globule. In this simplified treatment re-entrance is present, as can be
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expected from naive estimates of the ground-state entropies of the stretched and compact state,
and the transition is of first order.

Finally, we argue that the exponent a in equation (11) is given by a = νθ
φ

as anticipated

above. Near Tθ at zero force the free energy behaves as F(T ) ∼ (Tθ −T )2−α=1/φ . For f � 0,
on the other hand, at T = Tθ , the free energy behaves as F(f ) ∼ f 1/νθ . Consequently, we
obtain a = νθ

φ
in equation (11). This is in agreement with the result found for d = 3 in [8],

where the exponents both take their mean-field values (1/2), and also with the mean-field
analysis in [6, 7], in which φ = 1 and consequently a = ν (1/2 in the ideal case treated
in [6, 7]).

In conclusion, we have presented an exact calculation of the phase diagram of a SAW in
the presence of a compacting contact energy and a stretching force. We deem it is interesting
because it can be analysed exactly. A mean-field-like treatment gives a re-entrant boundary
and a first-order transition. Neither of these predictions is confirmed by the exact treatment,
which gives a critical line with a zero-temperature negative slope and a second-order transition.
This has been explained in a simple way by analysing a simplified version of the recursion
relations, analogous to the real-space RG equations. Whether or not the critical line in the
hypercubic lattice shows re-entrance is therefore not yet clear and appears to be an intriguing
question. The 3DSG hasDf = 2 and so the most natural comparison is with the Monte Carlo
simulations performed in [8], which indeed give a second-order transition, even though we
cannot be sure that the order of the transition is the same in the two-dimensional real and fractal
lattices. The behaviour of the critical force near the theta point has been found and a general
argument, also valid for hypercubic lattices, has been given in agreement with the result we
found here and also with the result found in d = 3 in [8].

This work was supported by cofin2001.
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